2018
DOI: 10.1016/j.eswa.2018.03.005
|View full text |Cite
|
Sign up to set email alerts
|

Dealing with seasonality by narrowing the training set in time series forecasting with k NN

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
19
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 69 publications
(25 citation statements)
references
References 48 publications
1
19
0
1
Order By: Relevance
“…[14] menerapkan pembobotan pada algoritme kNN untuk klasifikasi dengan direct cost sensitive dan distance cost sensitive kNN. Penanganan prediksi data timeseries yang memiliki sifat musiman juga telah dikaji dalam [15]. Penanganannya dengan membagi data training sesuai periode musiman tersebut dan hasil prediksi merupakan agregat dari sejumlah nilai target.…”
Section: Pendahuluanunclassified
“…[14] menerapkan pembobotan pada algoritme kNN untuk klasifikasi dengan direct cost sensitive dan distance cost sensitive kNN. Penanganan prediksi data timeseries yang memiliki sifat musiman juga telah dikaji dalam [15]. Penanganannya dengan membagi data training sesuai periode musiman tersebut dan hasil prediksi merupakan agregat dari sejumlah nilai target.…”
Section: Pendahuluanunclassified
“…The historical data of the previous 7 days, 21 days, and 40 days are employed to forecast the system load from January 10 to January 16, 2015. To evaluate the representation learning ability of the deep forest regression for STLF, random forest [56], bagging algorithm [57], gradient boosting algorithm [58], back propagation neural network [59], and k-nearest neighbor algorithm [60] are compared with the proposed deep forest regression in this paper.…”
Section: Examples and Resultsmentioning
confidence: 99%
“…Studies about sales prediction has been done in variate business cases, and variate approach. Generally, prediction techniques can be divided into two major categories: non-algorithmic and algorithmic, or statistical model and computational intelligence [5]. Generally, the non-algorithmic approach uses a simple, fixed formula to predict future conditions.…”
Section: Introductionmentioning
confidence: 99%