A fundamental challenge in neuroscience is to uncover the principles governing complex interactions between the brain and its external environment. Over the past few decades, the development of functional neuroimaging techniques and tools from graph theory, network science, and computational neuroscience have markedly expanded opportunities to study the intrinsic organization of brain activity. However, many current computational models are fundamentally limited by little to no explicit assessment of the brain's interactions with external stimuli. To address this limitation, we propose a simple scheme that jointly estimates the intrinsic organization of brain activity and extrinsic stimuli. Specifically, we adopt a linear dynamical model (intrinsic activity) under unknown exogenous inputs (e.g., sensory stimuli), and jointly estimate the model parameters and exogenous inputs. First, we demonstrate the utility of this scheme by accurately estimating unknown external stimuli in a synthetic example. Next, we examine brain activity at rest and task for 99 subjects from the Human Connectome Project, and find significant task-related changes in the identified system, and task-related increases in the estimated external inputs showing high similarity to known task regressors. Finally, through detailed examination of fluctuations in the spatial distribution of the oscillatory modes of the estimated system during the resting state, we find an apparent non-stationarity in the profile of modes that span several brain regions including the visual and the dorsal attention systems. The results suggest that these brain structures display a time-varying relationship, or alternatively, receive non-stationary exogenous inputs that can lead to apparent system non-stationarities. Together, our embodied model of brain activity provides an avenue to gain deeper insight into the relationship between cortical functional dynamics and their drivers.