Quantifying signals and uncertainties in climate models is essential for climate change detection, attribution, prediction and projection [1][2][3] . Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain 4 , leading to low confidence in regional projections especially for precipitation over the coming decades 5, 6 . Furthermore, model simulations with tiny differences in initial conditions suggest that uncertainties may be largely irreducible due to the chaotic nature of the climate system 7-9 . However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate predictions of the last six decades project (GA 776613). FJDR, LPC, SW and RB also acknowledge the support from the EUCP project (GA 776613) and from the Ministerio de Economía y Competitividad (MINECO) as part of the CLINSA project (Grant No. CGL2017-85791-R). SW received funding from the innovation programme under the Marie Skĺodowska-Curie grant agreement H2020-MSCA-COFUND-2016-754433 and PO from the Ramon y Cajal senior tenure programme of MINECO. The EC-Earth simulations were performed on Marenostrum 4 (hosted by the Barcelona Supercomputing Center, Spain) using Auto-Submit through computing hours