In this study, we present an efficient approach for the depolymerization of poly(methyl methacrylate) (PMMA) copolymers synthesized via conventional radical polymerization. By incorporating low mol % phthalimide ester-containing monomers during the polymerization process, colorless and transparent polymers closely resembling unfunctionalized PMMA are obtained, which can achieve >95% reversion to methyl methacrylate (MMA). Notably, our catalyst-free bulk depolymerization method exhibits exceptional efficiency, even for high-molecular-weight polymers, including ultrahigh-molecular-weight (10 6 −10 7 g/mol) PMMA, where near-quantitative depolymerization is achieved. Moreover, this approach yields polymer byproducts of significantly lower molecular weight, distinguishing it from bulk depolymerization methods initiated from chain ends. Furthermore, we extend our investigation to polymethacrylate networks, demonstrating high extents of depolymerization. This innovative depolymerization strategy offers promising opportunities for the development of sustainable polymethacrylate materials, holding great potential for various applications in polymer science.