We compute S-wave quarkonium wavefunctions at the origin in the $$ \overline{\mathrm{MS}} $$
MS
¯
scheme based on nonrelativistic effective field theories. We include the effects of nonperturbative long-distance behaviors of the potentials, while we determine the short-distance behaviors of the potentials in perturbative QCD. We obtain $$ \overline{\mathrm{MS}} $$
MS
¯
-renormalized quarkonium wavefunctions at the origin that have the correct scale dependences that are expected from perturbative QCD, so that the scale dependences cancel in physical quantities. Based on the calculation of the wavefunctions at the origin, we make model-independent predictions of decay constants and electromagnetic decay rates of S-wave charmonia and bottomonia, and compare them with measurements. We find that the poor convergence of perturbative QCD corrections are substantially improved when we include corrections to the wavefunctions at the origin in the calculation of decay constants and decay rates.