We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From a thermodynamic argument we obtain the number of particles in the dressing cloud, illustrating the repulsive character of the polaron. Identifying the important 2-and 3-body decay channels, we furthermore calculate the lifetime of the repulsive polaron. The stability conditions for the formation of fully spin polarized (ferromagnetic) domains are then examined for a binary mixture of atoms with a general mass ratio. Our results indicate that mass imbalance lowers the critical interaction strength for phase-separation, but that very short quasiparticle decay times will complicate the experimental observation of itinerant ferromagnetism. Finally, we present the spectral function of the impurity for various coupling strengths and momenta.