Abstract. We show here the uniform stabilization of a coupled system of hyperbolic and parabolic PDE's which describes a particular fluid/structure interaction system. This system has the wave equation, which is satisfied on the interior of a bounded domain Ω, coupled to a "parabolic-like" beam equation holding on ∂Ω, and wherein the coupling is accomplished through velocity terms on the boundary. Our result is an analog of a recent result by Lasiecka and Triggiani which shows the exponential stability of the wave equation via Neumann feedback control, and like that work, depends upon a trace regularity estimate for solutions of hyperbolic equations.