The paper presents results on experimentally investigated dynamics of boiling development and formation of film boiling zones under stepwise heat generation on a horizontally and vertically oriented cylindrical surface in a large volume of Freon-21. Experimental data on the expectation time and boiling temperature, the propagation velocity and structure of evaporation and boiling fronts for different heat flux density both in saturated liquid and in subcooling conditions are obtained. Results of experiments on investigating the nucleation forms under development of nonstationary heat release crisis caused by heat loading on the vertical heater immersed into the volume of liquid (water, ethanol) subcooled to saturation temperature are presented. A calculation ratio for determining the expectation time to the beginning of intense vaporization in water is proposed and compared with experimental data obtained on surfaces with different-size roughness. Peculiarities of evolution of evaporation fronts from incipient bubbles are investigated in the experiments with ethanol. Data on the evaporation front velocity as a function of wall overheating are obtained. The obtained experimental data on the propagation velocity of self-sustained evaporation fronts are compared with the known calculated data.