This paper explores the impact of an increasing number of prosumers in electricity supply systems and investigates how market mechanisms can mitigate the negative effects. The Regional Energy Market Model simulates a supply system based on cellular structures, employing agent-based modeling to capture individual behaviors and simulate real market dynamics. This study includes various supply scenarios, such as a solely photovoltaic scenario and a technically diversified scenario with biogas-fueled combined heat and power units. For each scenario, fixed and flexible pricing scenarios are simulated to analyze their effects. The findings reveal that systems heavily reliant on photovoltaics experience negative effects at certain points due to seasonal limitations, while technically diversified supply scenarios demonstrate fewer drawbacks. Flexible pricing systems stimulate demand in a manner beneficial to the system, creating regional added value, and contributing to the balance between generation and consumption, depending on the supply scenario. However, the study underscores that economic incentives alone are insufficient for balancing generation and consumption. The results highlight the importance of exploring opportunities through the interplay of economic incentive mechanisms and technical possibilities.