A new trend in the robotic motion planning literature is to use formal methods, like model checking, reactive synthesis and supervisory control theory, to automatically design controllers that drive a mobile robot to accomplish some high level missions in a guaranteed manner. This is also known as the correct-by-construction method. The high level missions are usually specified as temporal logics, particularly as linear temporal logic formulas, due to their similarity to human natural languages. This paper provides a brief overview of the recent developments in this newly emerged research area. A number of fundamental topics, such as temporal logic, model checking, bisimulation quotient transition systems and reachability controller design are reviewed. Additionally, the key challenges and possible future directions in this area are briefly discussed with references given for further reading.