Compound-specific isotope analysis (CSIA) of individual organic compounds is a powerful but underutilized tool in petroleum exploration. When integrated with other organic geochemical methodologies it can provide evidence of fluid histories including source, maturity, charge history and reservoir processes that can support field development planning and exploration efforts. The purpose of this chapter is to provide a review of the methodologies used for generating carbon and hydrogen isotope data for mid-and high-molecular-weight n-alkanes.We discuss the factors that control stable carbon and hydrogen isotope compositions of n-alkanes and related compounds in sedimentary and petroleum systems and review current and future applications of this methodology for petroleum exploration. We discuss basin-specific case studies that demonstrate the usefulness of CSIA either when addressing particular aspects of petroleum exploration (e.g. charge evaluation, source rock-oil correlation, and investigation of maturity and in-reservoir processes) or when this technique is used to corroborate interpretations from integrated petroleum systems analysis, providing unique insights which may not be revealed when using other methods. CSIA of n-alkanes and related n-alkyl structures can provide independent data to strengthen petroleum systems concepts from generation and expulsion of fluids from source rock, to charge history, connectivity, and in-reservoir processes.Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.Petroleum geoscientists use organic geochemistry as an essential tool in oil and gas exploration and field development planning. Relatively low-cost, high-throughput bulk data are commonly used to screen for source rock quality (e.g. per cent total organic carbon (%TOC), hydrogen and oxygen indices) and thermal maturity (Tmax, vitrinite reflectance equivalent). More in-depth geochemical analytical techniques are used in the context of full fluid and reservoir properties to correlate source rocks and reservoir oils, to determine fluid generation and migration history, including presentday reservoir connectivity, and to understand in-reservoir processes, such as biodegradation of in-reservoir oils. These tools are especially powerful when coupled with other measurements made during the exploration and development process, such as compositional analysis during drilling, downhole fluid analysis and other wireline measurements, and pressure, volume, temperature (PVT) and chemical analyses, integrated in the context of geological static and reservoir dynamic models.Molecular biomarkers have been employed in petroleum exploration for several decades (Peters et al. 2005). The usefulness of bulk stable isotope measurements of gases and oils was well demonstrated in the petroleum industry through the decades of the 1970s and 1980s (Stahl 1977;Schoell 1984;Sofer 1984). However, the use of compound-specific isotopic composition of light hydrocarbons, alkanes and biomarkers is less common....