In this paper, Cu nanocolumnar structure electrodes are synthetized using a clean and easy-to-scale-up direct-current magnetron sputtering (DC-MS) technique for non-enzymatic glucose sensing. The nanocolumnar structure increases the active surface area of the deposit, with the nanocolumns showing a mean size diameter of 121.0 nm ± 27.2 and a length of 2.52 µm ± 0.23. A scanning transmission electron (STEM) analysis shows the presence of Cu and a small amount of Cu2O. The behavior of the electrodes in alkaline environments and the electrochemical affinity of the Cu nanocolumns (CuNCs) towards the electro-oxidation of glucose are investigated using cyclic voltammetry (CV). After performing CV in NaOH solution, the columnar structures present corrosion products containing Cu2O, as revealed by STEM and X-ray diffraction (XRD) analyses. The amperometric responses of the CuNCs to the successive addition of glucose show a linear range up to 2 mM and a limit of detection of 5.2 µM. Furthermore, the electrodes are free from chloride poisoning, and they are insensitive to dopamine, uric acid, ascorbic acid, and acetaminophen at their physiological concentrations.