2023
DOI: 10.1016/j.nicl.2023.103376
|View full text |Cite
|
Sign up to set email alerts
|

Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0
3

Year Published

2023
2023
2025
2025

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 10 publications
(8 citation statements)
references
References 48 publications
0
5
0
3
Order By: Relevance
“…L. Coll et al predicted a class of multiple sclerosis disability using whole-brain MRI scans as input by a 3D-CNN model, which achieved a mean accuracy of 79% and proved to be superior to the equivalent logistic regression model (77%). The model was also successfully validated in the independent external cohort without any re-training (accuracy = 71%) [81]. Perinatal arterial ischemic stroke has been linked to unfavorable neurological outcomes.…”
Section: Deep Learning Assisted Mrimentioning
confidence: 94%
“…L. Coll et al predicted a class of multiple sclerosis disability using whole-brain MRI scans as input by a 3D-CNN model, which achieved a mean accuracy of 79% and proved to be superior to the equivalent logistic regression model (77%). The model was also successfully validated in the independent external cohort without any re-training (accuracy = 71%) [81]. Perinatal arterial ischemic stroke has been linked to unfavorable neurological outcomes.…”
Section: Deep Learning Assisted Mrimentioning
confidence: 94%
“…These studies show the potential of AI algorithms to provide an accurate patient stratification that is both biologically reliable and prognostically meaningful. 42,44 Regarding the studies that have used attention maps, which reflect those anatomical regions that the DL model deems more relevant to make a given DL-based prediction, Eitel et al 11 found that posterior periventricular white matter regions were determinant for the diagnosis of MS. More recently, Coll et al 45 found that the areas identified as most relevant to classify patients into more or less disabled (i.e. EDSS ⩾ 3.0 vs EDSS < 3.0) were the frontotemporal cortex and cerebellum (Figure 5), suggesting that damage in these regions may be key to disability accrual (please see Table 5 for more details).…”
Section: Investigation Of Disease Mechanismsmentioning
confidence: 99%
“…As can be observed, the most relevant brain areas for the DL-based prediction were the frontal and cerebellar cortices. See Coll et al 45 for more details.…”
Section: Investigation Of Disease Mechanismsmentioning
confidence: 99%
“…Descubrieron que estas áreas se encontraban en las regiones de la sustancia blanca periventricular posterior 7 . Más recientemente, Coll et al 24 utilizaron mapas de atención derivados por CNN para descubrir las regiones cerebrales que el algoritmo de aprendizaje profundo había considerado más relevantes para la estratificación de personas con EM (n = 319) en discapacitadas (EDSS ≥ 3.0) o no discapacitadas (EDSS < 3.0) utilizando solo una imagen de RM estructural 24 . Su modelo de CNN logró una precisión promedio del 79%, superando a un modelo de regresión logística equivalente (77%).…”
Section: Investigación De Los Mecanismos De La Enfermedadunclassified
“…Los análisis de los mapas de atención (Fig. 2) revelaron el papel predominante de la corteza frontotemporal y el cerebelo en las decisiones de la CNN, lo que sugiere que los mecanismos que conducen a la acumulación de discapacidad podrían estar relacionados con el daño en esas regiones 24 .…”
Section: Investigación De Los Mecanismos De La Enfermedadunclassified