A de novo designed biomolecule called INASHD was utilized through computer-aided drug design techniques to specifically target β2-spectrin, effectively suppressing and preventing NASH disease. Advanced computational software tools concerning the technologies of molecular docking and molecular dynamics (MD), were employed to showcase the drug's remarkable ability to efficiently suppress and control the α-helical topology of β2-spectrin. This protein is a vital component within the disease pathway. We successfully devised an effective design suppressing β2-spectrin, exhibiting an inhibition score surpassing any other molecule documented in scientific literature. With robust support from validated computational software, this bioorganic structure holds significant value and can be applied for a patent due to its innovative design. It shows promising potential for delivering positive outcomes in various stages, including in vitro, in vivo, ex vivo, and human phase studies.