Background
Understanding the neural mechanism underlying the transition from suicidal ideation to action is crucial but remains unclear. To explore this mechanism, we combined resting-state functional connectivity (rsFC) and computational modeling to investigate differences between those who attempted suicide(SA) and those who hold only high levels of suicidal ideation(HSI).
Methods
A total of 120 MDD patients were categorized into SA group (n=47) and HSI group (n=73). All participants completed a resting-state functional MRI scan, with three subregions of the insula and the dorsal anterior cingulate cortex (dACC) being chosen as the region of interest (ROI) in seed-to-voxel analyses. Additionally, 86 participants completed the balloon analogue risk task (BART), and a five-parameter Bayesian modeling of BART was estimated.
Results
In the SA group, the FC between the ventral anterior insula (vAI) and the superior/middle frontal gyrus (vAI-SFG, vAI-MFG), as well as the FC between posterior insula (pI) and MFG (pI-MFG), were lower than those in HSI group. The correlation analysis showed a negative correlation between the FC of vAI-SFG and psychological pain avoidance in SA group, whereas a positive correlation in HSI group. Furthermore, the FC of vAI-MFG displayed a negative correlation with loss aversion in SA group, while a positive correlation was found with psychological pain avoidance in HSI group.
Conclusion
In current study, two distinct neural mechanisms were identified in the insula which involving in the progression from suicidal ideation to action. Dysfunction in vAI FCs may gradually stabilize as individuals experience heightened psychological pain, and a shift from positive to negative correlation patterns of vAI-MFC may indicate a transition from state to trait impairment. Additionally, the dysfunction in PI FC may lead to a lowered threshold for suicide by blunting the perception of physical harm.