Decision making with dynamic probabilistic forecasts
Peter Tankov,
Laura Tinsi
Abstract:We consider a sequential decision making process, such as renewable energy trading or electrical production scheduling, whose outcome depends on the future realization of a random factor, such as a meteorological variable. We assume that the decision maker disposes of a dynamically updated probabilistic forecast (predictive distribution) of the random factor. We propose several stochastic models for the evolution of the probabilistic forecast, and show how these models may be calibrated from ensemble forecasts… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.