Abstract. In flexible environments like healthcare and customer service, business processes are executed with high variability. Often, this is because cases' characteristics vary. However, it is difficult to correlate process flow with characteristics because characteristics may refer to different perspectives, their number can be real big or even because deep domain knowledge may be required to state hypotheses. The goal of this paper is to propose an effective exploratory tool for discovering the characteristics that are causing the process variation. To this end, we propose a process mining approach. First, we apply a clustering approach based on Latent Class Analysis to identify subtypes of related cases based on the case-wise process characteristics. Then, a process model is discovered for each cluster and through a model similarity step, we are able to recommend the characteristics that mostly diversify the flow. Finally, to validate our methodology, we applied it to both simulated and real datasets.