Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Aim: The purpose of this study is to identify cyber threats associated with systems integrating fire protection devices (SIUP). The analysis includes conducting a comprehensive assessment of potential attack sites (vulnerabilities) and recommendations for building designers and managers to minimise adverse actions. Project and methods: A detailed review of the literature and cybersecurity standards applicable to fire protection systems, such as NFPA 72, was conducted, from which key points that are vulnerable elements and represent attack surfaces were identified. The Cybersecurity for Fire Protection Systems report from a workshop held by the Research Foundation in 2021 was analysed. Results: Analysis of the collected research material showed that the key points of vulnerability are human factors, software, hardware, wired and wireless connections and system security. In addition, internal threats, i.e. lack of training, malicious action by employees, invasion by unknown software and too much access by security personnel to system components, are also important issues. It has been found that cybercriminals can use various techniques: denial-of- service (DoS) attacks, man-in-the-middle attacks, remote code execution and social engineering, to disrupt systems. To prevent this and minimise the risk of attacks, it is recommended that security configuration guides should be issued, that specialists should be employed and that strategies should be created to increase the resilience of systems integrating fire appliances to cyber attacks. Currently, Polish regulations are mainly based on the technical aspects of SIUP operation, i.e. the installation and operation of alarm systems. There is a lack of relevant legal regulations that directly address the issue of the network and cyber security of these systems. Conclusions: It is necessary to urgently develop and implement comprehensive legal regulations that would take into account the specificity of the cyber security of fire protection systems in Poland. Future research should also focus on the human factor aspects of SIUP systems security. Keywords: safety, cyber security, fire protection, system integrating fire protection devices, SIUP, fire protection device
Aim: The purpose of this study is to identify cyber threats associated with systems integrating fire protection devices (SIUP). The analysis includes conducting a comprehensive assessment of potential attack sites (vulnerabilities) and recommendations for building designers and managers to minimise adverse actions. Project and methods: A detailed review of the literature and cybersecurity standards applicable to fire protection systems, such as NFPA 72, was conducted, from which key points that are vulnerable elements and represent attack surfaces were identified. The Cybersecurity for Fire Protection Systems report from a workshop held by the Research Foundation in 2021 was analysed. Results: Analysis of the collected research material showed that the key points of vulnerability are human factors, software, hardware, wired and wireless connections and system security. In addition, internal threats, i.e. lack of training, malicious action by employees, invasion by unknown software and too much access by security personnel to system components, are also important issues. It has been found that cybercriminals can use various techniques: denial-of- service (DoS) attacks, man-in-the-middle attacks, remote code execution and social engineering, to disrupt systems. To prevent this and minimise the risk of attacks, it is recommended that security configuration guides should be issued, that specialists should be employed and that strategies should be created to increase the resilience of systems integrating fire appliances to cyber attacks. Currently, Polish regulations are mainly based on the technical aspects of SIUP operation, i.e. the installation and operation of alarm systems. There is a lack of relevant legal regulations that directly address the issue of the network and cyber security of these systems. Conclusions: It is necessary to urgently develop and implement comprehensive legal regulations that would take into account the specificity of the cyber security of fire protection systems in Poland. Future research should also focus on the human factor aspects of SIUP systems security. Keywords: safety, cyber security, fire protection, system integrating fire protection devices, SIUP, fire protection device
Introduction. The authors have classified numerous publications, addressing the assignment of explosion and fire safety categories to premises, buildings and outdoor facilities, into the three groups: 1) sources of information that are in effect (including in-house and region-wide documents), sources that were in effect; 2) manuals and guidelines on category assignment; 3) publications that confirm (refute) or clarify some provisions, specified in regulatory sources. This article can be included into the third group of publications.Goal. Analysis of different methods, used to identify the value of Z factor; identification of strengths and weaknesses of each method, development of recommendations on the application of these methods.Objectives. The objective is to identify the substance-related factor contributing to explosions, use particular cases to demonstrate the efficiency of this or other identification method.Results and discussion. The analysis of Z factor identification methods, describing the contribution of vapours of highly flammable liquids to an explosion, has proven that three types of procedures can be used to find the Z factor value:the method of tables (that uses the maximal possible tabular value of Z = 1; for gases and aerosols Z = 0.5; for vapours of highly flammable liquids Z = 0.3);the computational method based on a pattern of three-dimensional gas and vapour spreading on the premises; however, this method, if applied, may involve a high probability of errors due to numerous conditions limiting its applicability; hence, the unexplainable value of Z may exceed 1. Besides, the computational method is extremely laborious. Its application requires the clarification of conditions for its use;the graphical method (based on the dependency graph of Z on the X parameter). This method is the simplest and the most reliable one. When the graphical method is used to find the value of Z, the excess oxidant ratio must be taken as being equal to one, and the Х parameter must be calculated according to the following formula: Х = 0.99 Рs.v/Сst.c.Conclusions. The graphical method, used to find the value of Z, is simple and reliable. When the Х parameter is identified, the excess air ratio is used: φ = 1.9, which leads to the underestimation of Z, the vapour-related factor contributing to explosions. To prevent the unreasonable underestimation of Z, the excess air ratio must be disregarded or taken as being equal to 0.99.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.