2020 6th International Conference on Interactive Digital Media (ICIDM) 2020
DOI: 10.1109/icidm51048.2020.9339669
|View full text |Cite
|
Sign up to set email alerts
|

Decision Tree Regression with AdaBoost Ensemble Learning for Water Temperature Forecasting in Aquaponic Ecosystem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
5

Year Published

2022
2022
2024
2024

Publication Types

Select...
9
1

Relationship

1
9

Authors

Journals

citations
Cited by 24 publications
(12 citation statements)
references
References 23 publications
0
7
0
5
Order By: Relevance
“…Selain itu, metode ini memiliki waktu pelatihan yang cukup singkat [11]. Pada penelitian terdahulu, konsep forecasting telah diterapkan pada penelitian mengenai sebuah sistem yang dapat meramalkan kondisi suhu air dapat menjadi solusi untuk masalah perubahan suhu air yang ekstrim, hasilnya dapat disimpulkan bahwa model decision tree forecasting dengan nilai mean squared error (MSE) sebesar 0,01211 dan nilai R-Squared 0,80920 [12]. Hal ini menunjukkan algoritma forecasting mampu meramalkan kondisi suhu air pada aquaponic.…”
Section: Pendahuluanunclassified
“…Selain itu, metode ini memiliki waktu pelatihan yang cukup singkat [11]. Pada penelitian terdahulu, konsep forecasting telah diterapkan pada penelitian mengenai sebuah sistem yang dapat meramalkan kondisi suhu air dapat menjadi solusi untuk masalah perubahan suhu air yang ekstrim, hasilnya dapat disimpulkan bahwa model decision tree forecasting dengan nilai mean squared error (MSE) sebesar 0,01211 dan nilai R-Squared 0,80920 [12]. Hal ini menunjukkan algoritma forecasting mampu meramalkan kondisi suhu air pada aquaponic.…”
Section: Pendahuluanunclassified
“…Decision Tree is a decision-making model that resembles a tree, where the tree is formed from the result of training [182]. Several methods are available to construct a decision tree, including iterative dichotomiser 3 (ID3) and classification and regression tree (CART) [183].…”
Section: ) Supervised Learningmentioning
confidence: 99%
“…where a i is the Lagrange multiplier, y i is the y value of x i , and b is the intercept. e DT is a classification model which is essentially a binary tree, where each branch in the tree is an ordinary ifelse decision [43]. However, the if-else decision comes from a training process through several stages [44].…”
Section: Theoremmentioning
confidence: 99%