Decisions Under Uncertainty as Bayesian Inference on Choice Options
Ferdinand M. Vieider
Abstract:Standard models of decision making under risk and uncertainty are deterministic. Inconsistencies in choices are accommodated by separate error models. The combination of decision model and error model, however, is arbitrary. Here, I derive a model of decision making under uncertainty in which choice options are mentally encoded by noisy signals, which are optimally decoded by Bayesian combination with preexisting information. The model predicts diminishing sensitivity toward both likelihoods and rewards, thus … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.