Most pathogens infect more than one host species, and given infection, the individual-level impact they have varies among host species. Nevertheless, variation in individual-level impacts of infection remains poorly characterised. Using the impactful and host-generalist ectoparasitic mite Sarcoptes scabiei (causing sarcoptic mange), we assessed individual-level variation in pathogen impacts by (1) compiling all documented individual-level impacts of S. scabiei across free-living host species, (2) quantifying and ranking S. scabiei impacts among host species, and (3) evaluating factors associated with S. scabiei impacts. We compiled individual-level impacts of S. scabiei infection from 77 host species, spanning 31 different impacts, and totalling 683 individual-level impact descriptions. The most common impacts were those affecting the skin, alopecia (130 descriptions), and hyperkeratosis coverage (106). From these impacts, a standardised metric was generated for each species (average impact score (AIS) with a 0-1 range), as a proxy of pathogen virulence allowing quantitative comparison of S. scabiei impacts among host species while accounting for the variation in the number and types of impacts assessed. The Japanese raccoon dog (Nyctereutes viverrinus) was found to be the most impacted host (AIS 0.899). We applied species inclusion criteria for ranking and found more well-studied species tended to be those impacted more by S. scabiei (26/27 species AIS < 0.5). AIS had relatively weak relationships with predictor variables (methodological, phylogenetic, and geographic). There was a tendency for Diprotodontia, Artiodactyla, and Carnivora to be the most impacted taxa and for research to be focussed in developed regions of the world. This study is the first quantitative assessment of individual-level pathogen impacts of a multihost parasite. The proposed methodology can be applied to other multihost pathogens of public health, animal welfare, and conservation concern and enables further research to address likely causes of variation in pathogen virulence among host species.