2018
DOI: 10.1007/s11600-018-0211-5
|View full text |Cite
|
Sign up to set email alerts
|

Declustering of Iran earthquake catalog (1983–2017) using the epidemic-type aftershock sequence (ETAS) model

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(3 citation statements)
references
References 31 publications
0
2
0
1
Order By: Relevance
“…Fungsi intensitas bersyarat model ETAS dapat digunakan untuk mengetahui aktivitas gempa bumi susulan. Model ETAS diterapkan pada kejadian gempa bumi di wilayah Iran dengan data dari 1983-2017 dengan ambang batas magnitude 4 SR [11]. Sementara itu, untuk kejadian gempa bumi di Indonesia, model ETAS diterapkan pada analisis gempa bumi di Sumatera [12] dan di area pantai selatan Pulau Jawa [7] yang menghasilkan prakiraan intensitas gempa bumi di kedua wilayah tersebut.…”
Section: Pendahuluanunclassified
“…Fungsi intensitas bersyarat model ETAS dapat digunakan untuk mengetahui aktivitas gempa bumi susulan. Model ETAS diterapkan pada kejadian gempa bumi di wilayah Iran dengan data dari 1983-2017 dengan ambang batas magnitude 4 SR [11]. Sementara itu, untuk kejadian gempa bumi di Indonesia, model ETAS diterapkan pada analisis gempa bumi di Sumatera [12] dan di area pantai selatan Pulau Jawa [7] yang menghasilkan prakiraan intensitas gempa bumi di kedua wilayah tersebut.…”
Section: Pendahuluanunclassified
“…(2018) for the nearest‐neighbor method and Davoudi et al. (2018), Zhuang et al. (2005), and Llenos and Michael (2020) for the stochastic declustering method.…”
Section: Introductionmentioning
confidence: 99%
“…Among the frequently used alternatives to window-based methods, we focus on two recently proposed declustering algorithms: the nearest-neighbor method by Ben-Zion (2013, 2016) and the stochastic declustering method by Zhuang et al (2002Zhuang et al ( , 2004 and Zhuang (2006). They have been the subject of several recent papers to which the readers can refer for additional details, for example, Peresan and Gentili (2018), Zhang andShearer (2016), andMartínez-Garzón et al (2018) for the nearest-neighbor method and Davoudi et al (2018), Zhuang et al (2005), and Llenos and Michael (2020) for the stochastic declustering method. Both methods are data driven and can be satisfactorily applied to decompose the seismic catalog into background seismicity and sequences of clustered earthquakes.…”
Section: Introductionmentioning
confidence: 99%