Broader applications of the Internet of Things (IoT) are expected in the forthcoming 6G system, although massive IoT is already a key scenario in 5G, predominantly relying on physical layer solutions inherited from 4G LTE and primarily using orthogonal multiple access (OMA). In 6G IoT, supporting a massive number of connections will be required for diverse services of the vertical sectors, prompting fundamental studies on how to improve the spectral efficiency of the system. One of the key enabling technologies is non-orthogonal multiple access (NOMA). This paper consists of two parts. In the first part, finite block length theory and the diversity order of multi-user systems will be used to show the significant potential of NOMA compared to traditional OMA. The supremacy of NOMA over OMA is particularly pronounced for asynchronous contention-based systems relying on imperfect link adaptation, which are commonly assumed for massive IoT systems. To approach these performance bounds, in the second part of the paper, several promising technology directions are proposed for 6G massive IoT, including linear spreading, joint spreading & modulation, multi-user channel coding in the context of various techniques for practical uncoordinated transmissions, cell-free operations, etc., from the perspective of NOMA.