2017
DOI: 10.1016/j.riai.2017.02.001
|View full text |Cite
|
Sign up to set email alerts
|

Decodificación de Movimientos Individuales de los Dedos y Agarre a Partir de Señales Mioeléctricas de Baja Densidad

Abstract: ResumenUno de los principales retos en el diseño de prótesis de mano es poder establecer un control intuitivo que reduzca el esfuerzo del usuario durante su entrenamiento. Este trabajo presenta un esquema para identificar tareas de motricidad fina de la mano, agrupadas en movimientos de los dedos individuales y gestos para el agarre de objetos el cual se ha validado con sujetos amputados. Se han comparado diferentes métodos de selección de características y clasificadores para el reconocimiento de patrones mio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 30 publications
0
1
0
Order By: Relevance
“…The introduction of these robotic devices into rehabilitation therapies can further improve them (Bortole et al, 2015 ). Regarding the control, EMG-based interfaces can be used to control prosthesis (Villarejo Mayor et al, 2017 ), but a Brain-Machine Interface (BMI) offers a more suitable option to control a mechanical device, such as a speller or a wheelchair (Li et al, 2014 ), and exoskeletons or robotic orthesis (Do et al, 2013 ; Kilicarslan et al, 2013 ; López-Larraz et al, 2016 ; Liu et al, 2017 ). In addition, a BMI can improve neuroplasticity during rehabilitation therapies through the cognitive engagement of the subject (Cramer, 2008 ; Gharabaghi, 2016 ; Barrios et al, 2017 ), a fact that has been proved in clinical studies (Donati et al, 2016 ).…”
Section: Introductionmentioning
confidence: 99%
“…The introduction of these robotic devices into rehabilitation therapies can further improve them (Bortole et al, 2015 ). Regarding the control, EMG-based interfaces can be used to control prosthesis (Villarejo Mayor et al, 2017 ), but a Brain-Machine Interface (BMI) offers a more suitable option to control a mechanical device, such as a speller or a wheelchair (Li et al, 2014 ), and exoskeletons or robotic orthesis (Do et al, 2013 ; Kilicarslan et al, 2013 ; López-Larraz et al, 2016 ; Liu et al, 2017 ). In addition, a BMI can improve neuroplasticity during rehabilitation therapies through the cognitive engagement of the subject (Cramer, 2008 ; Gharabaghi, 2016 ; Barrios et al, 2017 ), a fact that has been proved in clinical studies (Donati et al, 2016 ).…”
Section: Introductionmentioning
confidence: 99%