Decoding Algorithm of Motor Imagery Electroencephalogram Signal Based on CLRNet Network Model
Chaozhu Zhang,
Hongxing Chu,
Mingyuan Ma
Abstract:EEG decoding based on motor imagery is an important part of brain–computer interface technology and is an important indicator that determines the overall performance of the brain–computer interface. Due to the complexity of motor imagery EEG feature analysis, traditional classification models rely heavily on the signal preprocessing and feature design stages. End-to-end neural networks in deep learning have been applied to the classification task processing of motor imagery EEG and have shown good results. Thi… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.