While intracortical brain-machine interfaces (BMIs) demonstrate feasibility to restore mobility to people with paralysis, it is still challenging to maintain high-performance decoding in clinical BMIs. One of the main obstacles for high-performance BMI is the noise-prone nature of traditional decoding methods that connect neural response explicitly with physical quantity, such as velocity. In contrast, the recent development of latent neural state model enables a robust readout of large-scale neuronal population activity contents. However, these latent neural states do not necessarily contain kinematic information useful for decoding. Therefore, this study proposes a new approach to finding kinematics-dependent latent factors by extracting latent factors' kinematics-dependent components using linear regression. We estimated these components from the population activity through nonlinear mapping. The proposed kinematics-dependent latent factors generate neural trajectories that discriminate latent neural states before and after the motion onset. We compared the decoding performance of the proposed analysis model with the results from other popular models. They are factor analysis (FA), Gaussian process factor analysis (GPFA), latent factor analysis via dynamical systems (LFADS), preferential subspace identification (PSID), and neuronal population firing rates. The proposed analysis model results in higher decoding accuracy than do the others (>17% improvement on average). Our approach may pave a new way to extract latent neural states specific to kinematic information from motor cortices, potentially improving decoding performance for online intracortical BMIs.