2021
DOI: 10.48550/arxiv.2111.05670
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

DeCOM: Decomposed Policy for Constrained Cooperative Multi-Agent Reinforcement Learning

Abstract: In recent years, multi-agent reinforcement learning (MARL) has presented impressive performance in various applications. However, physical limitations, budget restrictions, and many other factors usually impose constraints on a multi-agent system (MAS), which cannot be handled by traditional MARL frameworks. Specifically, this paper focuses on constrained MASes where agents work cooperatively to maximize the expected team-average return under various constraints on expected team-average costs, and develops a c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?