Decomposable designs are important combinatorial designs, and have applications in constant weight codes, perfect threshold schemes and graph decompositions. Let
λ $\lambda $ be an even positive integer. A
λ
2 $\frac{\lambda }{2}$‐decomposable super‐simple
(
v
,
k
,
λ
) $(v,k,\lambda )$‐balanced incomplete block design (BIBD) is a super‐simple
(
v
,
k
,
λ
) $(v,k,\lambda )$‐BIBD,
(
V
,
ℬ
) $(V,{\rm{ {\mathcal B} }})$, where
ℬ
=
MJX-tex-caligraphicnormalℬ
1
∪
MJX-tex-caligraphicnormalℬ
2 ${\rm{ {\mathcal B} }}={{\rm{ {\mathcal B} }}}_{1}\cup {{\rm{ {\mathcal B} }}}_{2}$, and each
(
V
,
MJX-tex-caligraphicnormalℬ
i
) $(V,{{\rm{ {\mathcal B} }}}_{i})$ is a
true(
v
,
k
,
λ
2
true) $(v,k,\frac{\lambda }{2})$‐BIBDs for
i
=
1
,
2 $i=1,2$. In this paper, for
λ
∈
MathClass-open{
4
,
6
MathClass-close} $\lambda \in \{4,6\}$, it is proved that the necessary conditions for the existence of a
λ
2 $\frac{\lambda }{2}$‐decomposable super‐simple
(
v
,
4
,
λ
) $(v,4,\lambda )$‐BIBD are also sufficient.