We consider the problem of providing systems of equations characterizing the forms with complex coefficients that are totally decomposable, i.e., products of linear forms. Our focus is computational. We present the well-known solution given at the end of the nineteenth century by Brill and Gordan and give a complete proof that their system does vanish only on the decomposable forms. We explore an idea due to Federico Gaeta which leads to an alternative system of equations, vanishing on the totally decomposable forms and on the forms admitting a multiple factor. Last, we give some insight on how to compute efficiently these systems of equations and point out possible further improvements.