Abstract-Skeleton-base-animation methods have been commonly used in the character animations. The process of making skeleton for character animation is a long-winded task requiring manual tweaking. This paper presents a novel method to create an automatic animated skeleton from 3D human geometric model through mesh contraction. An automatically generated skeleton is animated by using Kinect captured human motion. The method first, extract a 1D curve-skeleton from the mesh through mesh contraction with constraints. Secondly, the hierarchical joint-based skeleton (armature) has been generated, using the extracted 1D curve-skeleton of the input mesh automatically. Third, the real-time human motion is captured by using the Kinect device. The Kinect captured motion also converts into a standard skeleton motion BVH (Biovision hierarchical) format. Finally, the Kinect motion is retargeted to animate the resulting skeleton of the mesh through joint mapping. The main objective of the proposed approach is to minimize labor-intensive process of skeleton adjustment for character animation. The results of a mesh generated skeleton and plausible skeleton animation to demonstrate the efficiency of the proposed work. The mesh generated skeleton and Kinect motion skeleton both can be directly useful for mesh skinning, mesh rigging, and motion retargeting to create satisfactory character animation.