In vibration experiments demanding long-duration measurements, traditional point-wise techniques are often employed, despite the availability of high-speed digital image correlation. This is due to the high volume of images generated by the latter technique, which limit acquisition times and lengthen post-processing times. In this experimental investigation, it is demonstrated that standard frame rate charge-coupled device cameras yield results for the mean deflected shape of a reinforced aerospace panel subject to a random broadband excitation between 0 and 800 Hz that are not statistically different to those from high-speed cameras. The images from both types of camera were processed using digital image correlation to generate out-of-plane displacement maps, which were then decomposed using Chebyshev descriptors for ease of comparison and to determine the mean deflected shape. The results indicate that, with appropriate sampling rates and durations, standard frame rate charge-coupled device cameras can be used to study broadband random excitation behavior of structures when mean behavior needs to be characterized over long time scales compared to the excitation wavelengths. This is contrary to accepted procedures, but offers comparable accuracy with substantially reduced computational resources compared to using high-speed cameras, as well as effectively unlimited data acquisition periods, which is useful in condition monitoring, for example.