Forest gap in alpine forests may redistribute the hydrothermal conditions in winter and growing season, which may affect the releases of copper and zinc in foliar litter during decomposition. However, the details of this process are largely unknown. Foliar litters of willow (Salix paraplesia), larch (Larix mastersiana), fir (Abies faxoniana), azalea (Rhododendron lapponicum), birch (Betula albosinensis) and cypress (Sabina saltuaria) were selected in an alpine forest of eastern Tibetan Plateau. The litterbags were placed on the forest floor from gap center, canopy gap edge and expanded gap edge to closed canopy. Zinc and copper contents were studied as litter decomposition proceeded. After one year of decomposition, zinc accumulated in all foliar litters regardless of gap positions, but copper accumulated in the litters of fir, azalea and cypress. Separately, copper released from all foliar litters in winter, whereas zinc in litters of larch, azalea, birch and cypress released in winter. Moreover, both copper and zinc accumulated during the growing season regardless of litter species. Nevertheless, higher accumulation rates were observed under closed canopy compared with other gap positions. These results suggest that forest gap slows the releases of copper and zinc in foliar litter during forest regeneration in these cold biomes.