Thermoelectric properties of undoped and doped (Ti0.75Sn0.25)O2 were investigated for high‐temperature thermoelectric conversion application. Nano‐composites were formed by annealing above 1000°C. Outside the spinodal dome, ilmenite‐type SnTiO3 precipitated from the rutile structure. Thermoelectric properties were measured in the temperature range from room temperature to 1000°C. (Ti0.75Sn0.25)O2 was doped with both acceptor and donor dopants. Both undoped and doped (Ti0.75Sn0.25)O2 exhibit n‐type electrical behavior independent of the type of the dopant. The electrical conductivity was enhanced three orders of magnitude by donor doping with Nb2O5 or Ta2O5; achieving a maximum of 546 S/m at 850°C. The increase in electrical conductivity was accompanied by reduction of the absolute Seebeck coefficient. Seebeck coefficient reduction of −600 μV/K was observed between undoped and 4% Ta2O5 doped samples. The solid solution and doping reduced the thermal conductivity to <4 W/mK, far below the parent materials TiO2 and SnO2. Lattice thermal conductivity decreased with increasing temperature, achieving 1.9 W/mK at 900°C for 4% Ta2O5 doping. No further reduction in thermal conductivity was observed in annealed samples containing nano‐sized SnTiO3 precipitates. Dimensionless figure of merit (ZT) attained was <0.1.