We prove that any square nilpotent matrix over a field is a difference of two idempotent matrices as well as that any square matrix over an algebraically closed field is a sum of a nilpotent square-zero matrix and a diagonalizable matrix. We further apply these two assertions to a variation of π-regular rings. These results somewhat improve on establishments due to Breaz from Linear Algebra & amp; Appl. (2018) and Abyzov from Siberian Math. J. (2019) as well as they also refine two recent achievements due to the present author, published in Vest. St. Petersburg Univ. - Ser. Math., Mech. & amp; Astr. (2019) and Chebyshevskii Sb. (2019), respectively.