Background: Plastid-derived metabolites can signal control over nuclear gene expression, chloroplast biogenesis, and chlorophyll biosynthesis. Norflurazon (NFZ) inhibition of carotenoid biosynthesis in seedlings can elicit a protoporphyrin retrograde signal that controls chlorophyll and chloroplast biogenesis. Recent evidence reveals that plastid development can be regulated by carotenoid cleavage products called apocarotenoids. The key steps in carotenoid biosynthesis and catabolism that generate apocarotenoid signalling metabolites in foliar tissues remains to be elucidated. Here, we established an Arabidopsis foliar pigment-based bioassay using detached rosettes to differentiate plastid signalling processes in young expanding leaves containing dividing cells with active chloroplast biogenesis, from fully expanded leaves containing mature chloroplasts. Results: We demonstrate that environmental (extended darkness and cold exposure) as well as chemical (norflurazon; NFZ) inhibition of carotenoid biosynthesis can reduce chlorophyll levels in young, but not older leaves following a 24 h of rosette treatment. Mutants that disrupted xanthophyll accumulation, phytohormone biosynthesis (abscisic acid and strigolactone), or enzymatic carotenoid cleavage, did not alter chlorophyll levels in young or old leaves. Perturbations in acyclic cis-carotene biosynthesis revealed that disruption of CAROTENOID ISOMERASE (CRTISO), but not ZETA-CAROTENE ISOMERASE (Z-ISO) activity, reduced chlorophyll levels in young but not older leaves of plants growing under a long photoperiod. NFZ-induced inhibition of PHYTOENE DESATURASE (PDS) activity triggered phytoene accumulation more so in younger relative to older leaves from both WT and the crtiso mutant, indicating a continued substrate supply from the methylerythritol 4-phosphate (MEP) pathway for carotenogenesis. NFZ treatment of WT and crtiso mutant rosettes reveal similar, additive, and opposite effects on individual pigment accumulation.Conclusion: The Arabidopsis foliar pigment-based bioassay was used to differentiate signalling events elicited by environmental, chemical, genetic, and combinations thereof, that control chlorophyll biosynthesis. Genetic perturbations that impaired xanthophyll biosynthesis and/or carotenoid catabolism did not affect chlorophyll biosynthesis. The lack of CAROTENOID ISOMERISATION generated a signal that rate-limited chlorophyll accumulation, but not phytoene biosynthesis in young Arabidopsis leaves exposed to a long photoperiod. Findings generated using this new foliar pigment bioassay implicate that carotenoid isomerisation and NFZ elicit different signalling pathways to control chlorophyll homeostasis in young emerging leaves.