2021
DOI: 10.48550/arxiv.2103.08348
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Decorrelating Adversarial Nets for Clustering Mobile Network Data

Abstract: Deep learning will play a crucial role in enabling cognitive automation for the mobile networks of the future. Deep clustering, a subset of deep learning, could be a valuable tool for many network automation use-cases. Unfortunately, most state-of-the-art clustering algorithms target image datasets, which makes them hard to apply to mobile network data due to their highly tuned nature and related assumptions about the data. In this paper, we propose a new algorithm, Decorrelating Adversarial Nets for Clusterin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?