This paper have studied the dynamic of a 2.0 MW Doubly Fed Induction Generator (DFIG) during a severe voltage sag. Using the dynamic model of a DFIG, it was possible to determine the current, Electromagnetic Force and flux behavior during three-phase symmetrical voltage dip. Among the technologies of wind turbines the DFIG is widely employed; however, this machine is extremely susceptible to disturbances from the grid. In order to improve DFIG Low Voltage Ride-Through (LVRT), it is proposed a novel solution, using Superconducting Current Limiter (SCL) in two arrangements: one, the SCL is placed between the machine rotor and the rotor side converter (RSC), and another placed in the RSC DC-link. The proposal is validated through simulation using PSCAD TM /EMTDC TM and according to requirements of specific regulations. The analysis ensure that both SCL arrangements behave likewise, and are effective in decrement the rotor currents during the disturbance.