We study the static black holes in the large D dimensions in the Gauss-Bonnet gravity with a cosmological constant, coupled to the Maxewell theory. After integrating the equation of motion with respect to the radial direction, we obtain the effective equations at large D to describe the nonlinear dynamical deformations of the black holes. From the perturbation analysis on the effective equations, we get the analytic expressions of the frequencies for the quasinormal modes of charge and scalar-type perturbations. We show that for a positive Gauss-Bonnet term, the black hole could become unstable only if the cosmological constant is positive, otherwise the black hole is always stable. However, for a negative Gauss-Bonnet term, we find that the black hole could always be unstable. The instability of the black hole depends not only on the cosmological constant and the charge, but also significantly on the Gauss-Bonnet term. Moreover, at the onset of instability there is a non-trivial static zero-mode perturbation, which suggests the existence of a new nonspherically symmetric solution branch. We construct the non-spherical symmetric static solutions of the large D effective equations explicitly.