Conference on Applied Superconductivity and Electromagnetic Devices, This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Technology, Sydney's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Abstract-In this paper, because the induction machines are described as the plants of highly nonlinear and parameters timevarying, in order to obtain a very well control performances that a conventional model reference adaptive inverse control (MRAIC) can not be gotten, a fuzzy neural network-based model reference adaptive inverse control strategy for induction motors is presented based on the rotor field oriented motion model of induction machines. The fuzzy neural network control (FNNC) is incorporated into the model reference adaptive control (MRAC), a fuzzy basis function network controller (FBNC) and a fuzzy neural network identifier (FNNI) for asynchronous motors adjustable speed system are designed. The proposed controller for asynchronous machines resolves the shortage of MRAC, and employs the advantages of FNNC and MRAC. Simulation results show that the proposed control strategy is of the feasibility, correctness and effectiveness.
Index Terms-induction machine, machine dynamic model, fuzzy neural network control (FNNC), model reference adaptive control (MRAC)I.