In neonatal rats, glutamate could induce retinal thinning depending on the development
stage, and the severity peaked at treatment on postnatal day (PND) 8. To elucidate the
molecular mechanism of retinal thinning induced by L-glutamate in neonatal rats, we
investigated the time-course gene expression profile in the developing retina in addition
to initial histopathological changes. Histopathologically, apoptotic cells in the inner
retina were observed at 6 hours after treatment on PNDs 4, 6 and 8, and inflammatory cell
infiltration was noted at 24 hours. Comprehensive gene expression analysis conducted on
PNDs 4 and 8 indicated that cell death/proliferation- and inflammation-related genes were
upregulated and that neuron development- and neurotransmitter-related genes were
downregulated. Furthermore, quantitative RT-PCR analysis of apoptosis- and
inflammation-related genes performed on PNDs 4, 6, 8, 10 and 12 showed that the
time-course changes of the gene expression ratios of Gadd45b and
Ccl3 seemed to be related to histopathological changes of the retina
induced by L-glutamate. These results revealed that the association of initial
histopathological changes with the gene expression profile in the retina induced by
L-glutamate and that Gadd45b and Ccl3 are considered to
participate in retinal thinning induced by L-glutamate in neonatal rats.