In mice, variability in adult bone size and density has been observed among common inbred strains. Also, in the group of genes regulating circadian rhythmicity in mice, so called clock genes, changes in body size and skeletal parameters have been noted in knockout mice. Here, we studied the size and density of prominent bones of the axial and appendicular skeleton of clock gene Period‐1‐deficient (Per1‐/‐) mice by means of microcomputed tomography. Our data show shorter spinal length, smaller and less dense femora and tibiae, but no significant changes in the shape of the skull and the length of the head. Together with the significantly lower total body weight of Per1‐/‐ mice, we conclude that Per1‐deficiency in a melatonin‐proficient mouse strain is associated with an altered body phenotype with smaller appendicular (hind limb) bone size, shorter spine length and lower total body weight while normal head length and brain weight. The observed changes suggest an involvement of secondary bone mineralisation with impact on long bones, but lesser impact on those of the skull. Evidence and overall physiological implications of these findings are discussed.