In this study, we examined the age-associated defect of stromal cells, which support B cell development, treated with 5-fluorouracil (5-FU) to induce severe perturbation of hematopoiesis, including B lymphocyte development, using SAMP1 mice exhibiting senescence-mimicking stromal-cell impairment after 30 weeks of age. Significant findings of this study are as follows: first, a marked and prolonged decrease in number of CFU-preB cells in non-SCI mice (58% of the steady-state level) associated with more markedly depressed number of CFU-preB cells in SCI mice (20% of the steady-state level), despite the absence of difference in the number of CFU-GMs during the period; second, in the non-SCI mice, a significant and prolonged up-regulation of GM-CSF and IL-6, positive regulators of myelopoiesis and suppressive factors of B lymphopoiesis, was observed. In SCI mice, greater and prolonged suppression of B lymphopoiesis was clearly demonstrated by the significant up-regulation of the negative regulator TNF-alpha associated with the concomitant marked down-regulation of the positive regulator SDF-1, although the increases of GM-CSF and IL-6 were limited. That is, 'negative complementation' makes preB recovery after 5-FU treatment impaired and prolonged. Principal component analysis clearly showed differences in the cytokine expression patterns in both early and later phases and the time course of the expression pattern of each cytokine between SCI and non-SCI mice without supervising information. An impaired regulation of the expressions of not only positive but also negative regulators after 5-FU treatment was, in part, the cause of the impaired regeneration of CFU-preB cells in SCI mice.