During implantation, cytotrophoblasts undergo epithelial-to-mesenchymal transition (EMT) as they differentiate into invasive extravillous trophoblasts (EVTs). The primate-specific microRNA cluster on chromosome 19 (C19MC) is exclusively expressed in the placenta, embryonic stem cells and certain cancers however, its role in EMT gene regulation is unknown. In situ hybridization for miR-517a/c, a C19MC cistron microRNA, in first trimester human placentas displayed strong expression in villous trophoblasts and a gradual decrease from proximal to distal cell columns as cytotrophoblasts differentiate into invasive EVTs. To investigate the role of C19MC in the regulation of EMT genes, we employed the CRISPR/dCas9 Synergistic Activation Mediator (SAM) system, which induced robust transcriptional activation of the entire C19MC cistron and resulted in suppression of EMT associated genes. Exposure of human iPSCs to hypoxia or differentiation of iPSCs into either cytotrophoblaststem-like cells or EVT-like cells under hypoxia reduced C19MC expression and increased EMT genes. Furthermore, transcriptional activation of the C19MC cistron induced the expression of OCT4 and FGF4 and accelerated cellular reprogramming. This study establishes the CRISPR/dCas9 SAM as a powerful tool that enables activation of the entire C19MC cistron and uncovers its novel role in suppressing EMT genes critical for maintaining the epithelial cytotrophoblasts stem cell phenotype.Human embryonic implantation into the uterus requires extensive coordinated attachment and invasion of the maternal endometrium by fetal trophoblasts. While in the fallopian tube, the developing embryo differentiates into the blastocyst, which consists of an inner cell mass, destined to become the fetus, and the trophectoderm, an outer layer of epithelial cells that eventually develops into the placenta 1 . Shortly before implantation, the highly mitotic cells derived from the trophectoderm -the cytotrophoblast (CTs) -differentiate into either multinucleated syncytiotrophoblast (STs) or extravillous trophoblast (EVTs). STs form the outer villous layer of the placenta and regulate maternal-fetal gas exchange, nutrient uptake and waste elimination. The interstitial EVTs invade the decidua and inner myometrium to anchor the chorionic villi to the decidua and uterine wall. Concurrently, endovascular EVTs penetrate the maternal spiral arteries and participate in remodeling them into high-flow, low-resistance vessels that facilitate placental perfusion to accommodate increasing O 2 and nutrient demands by the developing fetus 2,3 .In humans, EVT differentiation and invasion are crucial steps involved in implantation and placentation. These cellular processes are regulated by several molecular mechanisms, which have not been completely elucidated. Inadequate EVT invasion, so called shallow placentation, can elicit placental hypoperfusion resulting in pregnancy complications including fetal loss, preeclampsia and/or fetal growth restriction 4,5 . In contrast increased EVT invasion ca...