Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling.aging | mitochondria | respiratory chain | free radicals M itochondria are key metabolic organelles whose oxidative phosphorylation (OXPHOS) system is considered to be one of the most efficient producers of bioenergy. When OX-PHOS function is compromized (e.g., by mutations or toxins), bioenergy supply and cellular homeostasis are seriously disrupted, which can be lethal.OXPHOS complex I plays a central role in the regulation of ATP production, intermediary metabolism, and apoptosis (1, 2), and mutations affecting it cause many human pathologies (3). It has also been proposed as a pacemaker of the aging process (4). Treatments inferred to decrease the production of reactive oxygen species (ROS) at the level of complex I can prolong lifespan in Drosophila (5). All these characteristics make it essential to understand better the role of complex I in vivo and its involvement in aging.Many organisms possess alternative enzymes that can bypass or replace the proton-translocating complexes of the mitochondrial respiratory chain. These include the alternative oxidases (AOX) and the NADH dehydrogenases of the Ndi and Nde families. Together these enzymes provide an alternative respiratory chain that potentially allows the maintenance of redox homeostasis and intermediary metabolism under conditions where flux through the "standard" respiratory chain is limited by high ATP levels, the action of toxins or other physiological restraints (6, 7). AOX acts as a bypass of complexes III and IV, whereas Nde or Ndi can bypass complex I.In previous studies these bypass enzymes were shown to be active when introduced into the mitochondria of higher metazoans such as mammals (8-12), arthropods (13), or nematodes (14), all of which lack endogenous alternative enzymes. Fu...