We aimed to directly compare the cost-effectiveness of Hungarian (following the NELSON trial) and NLST screening protocols, two trials influencing lung-cancer-screening implementation internationally. A decision-analytic model analyzing the cost-effectiveness of Hungarian protocols was manipulated to reflect the protocols of the NLST, while maintaining features specific to the Hungarian healthcare setting. In the Hungarian protocol, there are three possible outcomes to the initial round of screening, positive, negative, and indeterminate, indicating an uncertain degree of suspicion for lung cancer. This protocol differs from the NLST, in which the only possible screening outcomes are positive or negative, with no indeterminate option. The NLST pathway for smokers aged 55–74 resulted in a EUR 43 increase in the total average lifetime costs compared to the Hungarian screening pathway and resulted in a lifetime gain of 0.006 QALYs. The incremental costs and QALYs yielded an ICER of 7875 EUR/QALY. Our results demonstrate that assigning any suspicious LDCT screen as a positive result (NLST protocol) rather than indeterminate (Hungarian protocol) can reduce patient uncertainty and yield a slight QALY gain that is worth the additional use of resources according to Hungary’s willingness-to-pay threshold. A stratified analysis by age was also conducted, revealing decreasing cost-effectiveness when screening older cohorts. Our study provides insight into the cost-effectiveness, advantages, and disadvantages of various LDCT screening protocols for lung cancer and can assist other countries as they implement their screening programs.