The myeloid C-type lectin receptor Dectin-2 directs the generation of Th2 and Th17 immune responses to the house dust mite Dermatophagoides farinae (Df) through the generation of cysteinyl leukotrienes (cys-LTs) and pro-inflammatory cytokines, respectively, but a role for Dectin-2 in effector phase responses has not been described. Here, we demonstrate that administration of the Dectin-2 mAb solely at the time of Df challenge abrogated eosinophilic and neutrophilic inflammation in the bronchoalveolar lavage (BAL) fluid and Th1, Th2, and Th17 inflammation in the lung of previously sensitized mice. Furthermore, Dectin-2 null mice (Clec4n−/−) sensitized with the adoptive transfer of Df-pulsed wild-type (WT) bone marrow-derived DCs (BMDCs) also had less Df-elicited pulmonary inflammation, supporting an effector function for Dectin-2. The protection from pulmonary inflammation seen with the Dectin-2 mAb or in Clec4n−/− mice was associated with little or no reduction in lung-draining lymph node cells or their cytokine production, and with no reduction in serum IgE. WT and Clec4n−/− mice recipients, sensitized with Df-pulsed WT BMDCs, had comparable levels of Df-elicited IL-6, IL-23, TNF-α, and cys-LTs in the lung. By contrast, Df-elicited CCL4 and CCL8 production from pulmonary CD11c+CD11b+Ly6C+ and CD11c+CD11b+Ly6C−CD64+ monocyte-derived DCs was reduced in Clec4n−/− recipients. Addition of CCL8 at the time of Df challenge abrogated the protection from eosinophilic, neutrophilic, and Th2 pulmonary inflammation seen in Clec4n−/− recipients. Taken together, these results reveal that Dectin-2 regulates monocyte-derived DC function in the pulmonary microenvironment at Df challenge to promote the local inflammatory response.