2023
DOI: 10.17929/tqs.9.18
|View full text |Cite
|
Sign up to set email alerts
|

Deep Anomaly Detection for Automotive Components by Oversampling

Chika Yokocho,
Hironobu Kawamura,
Kozaburo Nirasawa

Abstract: Training of deep neural networks (DNNs) requires large amounts of data. However, the automotive components that are the subject of this research have an extreme lack of defective product data due to rapid model changes and a low defective product rate during the manufacturing process. Additionally, the anomaly areas are negligible. Data augmentation (DA), which increases data by image transformations, is a method for solving data deficiency. Particularly, a deep convolutional generative adversarial network (DC… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?