2024
DOI: 10.1017/s2633903x24000096
|View full text |Cite
|
Sign up to set email alerts
|

Deep-blur: Blind identification and deblurring with convolutional neural networks

Valentin Debarnot,
Pierre Weiss

Abstract: We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators. Numerical experiments show that the proposed method can accurately and robu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 71 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?