2023
DOI: 10.48550/arxiv.2301.06907
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Deep Conditional Measure Quantization

Abstract: The quantization of a (probability) measure is replacing it by a sum of Dirac masses that is close enough to it (in some metric space of probability measures). Various methods exists to do so, but the situation of quantizing a conditional law has been less explored. We propose a method, called DCMQ, involving a Huber-energy kernel-based approach coupled with a deep neural network architecture. The method is tested on several examples and obtains promising results.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?