2022
DOI: 10.11591/ijece.v12i5.pp5493-5500
|View full text |Cite
|
Sign up to set email alerts
|

Deep convolutional network based real time fatigue detection and drowsiness alertness system

Abstract: <span>Fatigue and drowsiness detection techniques based on the external features are under progress, and the methods of facial feature extraction require further development. This paper discusses the innovative processes, efficient methods, and recent advancements in the field of drowsiness and fatigue detection. In this proposed model, a wide application is planned in the field of artificial intelligence by defining the fundamentals of human-computer interaction, facial expression recognition and driver… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 31 publications
0
0
0
1
Order By: Relevance
“…Pada penelitian [2] identifikasi kelelahan pengemudi dengan menggunakan pengenalan iris menghasilkan akurasi sekitar 80%. Pada penelitian [4] deteksi kelelahan dan kantuk menggunakan deep convolutional network menghasilkan rata-rata akurasi sebesar 68%, 81%, 91%, dan 93% pada skenario yang berbeda. Pada penelitian [5] deteksi kantuk pengemudi menggunakan analisis electrooculogram dan optimasi grey wolf menghasilkan akurasi 99,6%.…”
Section: Pendahuluanunclassified
“…Pada penelitian [2] identifikasi kelelahan pengemudi dengan menggunakan pengenalan iris menghasilkan akurasi sekitar 80%. Pada penelitian [4] deteksi kelelahan dan kantuk menggunakan deep convolutional network menghasilkan rata-rata akurasi sebesar 68%, 81%, 91%, dan 93% pada skenario yang berbeda. Pada penelitian [5] deteksi kantuk pengemudi menggunakan analisis electrooculogram dan optimasi grey wolf menghasilkan akurasi 99,6%.…”
Section: Pendahuluanunclassified